

Рабочая программа дисциплины

Б1.О.16 Физическая и коллоидная химия Обязательная часть

Специальность 33.05.01 Фармация квалификация: провизор Форма обучения: очная **Срок обучения:** 5 лет

Рабочая программа дисциплины одобрена ученым советом института и утверждена приказом директора № 1 от 01.09.2021 года

1 Нормативная база

Федеральный государственный образовательный стандарт высшего образования по специальности 33.05.01 «Фармация» (уровень специалитета), утвержденный приказом Минобрнауки России от 27.03.2018 г. № 219.

2 Цели и задачи дисциплины, ее место в структуре образовательной программы

Дисциплина «Физическая и коллоидная химия» относится к базовой части учебного плана образовательной программы по специальности 33.05.01 Фармация.

Цель дисциплины «Физическая и коллоидная химия» состоит в освоении основных физико-химических понятий, в изучении и научном объяснении основных закономерностей, определяющих направление физико-химических процессов, скорость их протекания, влияние на них различных факторов, в выявлении механизма химических реакций, в установлении связи между строением и свойствами веществ, а также в формировании способности и готовности к анализу лекарственных средств с помощью химических и физико-химических методов для решения профессиональных задач.

Задачи дисциплины:

- сформировать теоретические знания по основным разделам дисциплины (по химической термодинамике, учению о химическом равновесии, термодинамике фазового равновесия, по основам учения о растворах, по электрохимии, по химической кинетике и катализу, по физикохимии поверхностных явлений, по строению и свойствам дисперсных (коллоидных) систем);
- сформировать умения использовать на практике знания физико-химических методов и методик, используемых при анализе лекарственных средств,
- сформировать навыки пользования основными приемами и методами физико-химических измерений, навыки работы с основными типами приборов, используемых для физико-химического анализа веществ, навыки обработки, анализа и обобщения результатов физико-химических наблюдений и измерений.

3 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Изучение дисциплины «Физическая и коллоидная химия» направлено на формирование у обучающихся следующих общепрофессиональных

компетенций:

- **ОПК-1** способен использовать основные биологические, физикохимические, химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов.
- **ИД-2** Применяет основные физико-химические и химические методы анализа для разработки, исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов.

Знать:

- основные понятия и формулы тематических разделов дисциплины (термодинамика, химическое и фазовое равновесие, формальная и молекулярная кинетика, электрохимия, поверхностные явления, дисперсные системы, растворы высокомолекулярных соединений);
- основы дифференциального и интегрального исчисления, правила нахождения производных, основы математического анализа функциональных зависимостей;
- теоретические основы физико-химических и химических методов потенциометрии, кондуктометрии, кулонометрии, анализа фотоколориметрии, седиментационного анализа, кинетических методов анализа, фазового анализа, титриметрии, капиллярного анализа и т.д., а также теоретические основы экстракции как метода разделения И концентрирования;
- основы метода «ускоренного старения» для определения сроков годности лекарственных препаратов;
- правила техники безопасности при работе с реактивами и приборами в химической лаборатории.

Уметь:

- планировать и проводить лабораторные эксперименты по физикохимическому и химическому анализу лекарственных средств в рамках разработки, исследований, экспертизы и изготовления лекарственных средств, лекарственного растительного сырья и биологических объектов;
- собирать установки для проведения лабораторных исследований; пользоваться приборами для физико-химического анализа;
- определять направление протекания химических реакций; рассчитывать ЭДС электрохимических систем, величины Кр и ΔG реакции; рассчитывать потенциалы электродов по уравнению Нернста и ЭДС концентрационных и химических гальванических элементов;
- экспериментально определять зависимость скорости реакции от параметров системы; количественно оценивать значение энергии активации химической реакции;
- оценивать коэффициенты активности ионов электролитов, используя теорию электролитической диссоциации Аррениуса и теорию сильных электролитов Дебая Гюккеля; рассчитывать электропроводность растворов;
- анализировать возможный сдвиг химического равновесия в системе с использованием правила Ле Шателье и соотношения скоростей прямой и

обратной химических реакций;

- рассчитывать количественные характеристики процесса экстракции по экспериментальным данным; обоснованно осуществлять выбор экстрагента и реэкстрагента для разделения, концентрирования и извлечения компонентов из растворов;
- осуществлять обоснованный выбор метода получения конкретной коллоидной системы;
- получать и стабилизировать коллоидные системы; грамотно подбирать защитный коллоид, электролит-коагулянт и пептизатор для конкретной коллоидной системы;
- определять методом капиллярного анализа знаки зарядов частиц золей в лекарственных формах; анализировать методом капиллярного анализа смеси веществ
- уметь экспериментально определять изоэлектрическую точку (ИЭТ) высокомолекулярных соединений амфолитов; по значению ИЭТ делать вывод о чистоте препарата, о пригодности препарата к дальнейшему использованию.

Владеть:

- навыками расчета необходимых физико-химических величин по формулам и уравнениям;
- навыками вычисления производных, дифференциальных навыками решения простейших интегральных выражений, дифференциальных уравнений; навыками использования метода наименьших квадратов математической обработки линейных ДЛЯ регрессионных зависимостей;
- навыками графического построения и интерпретации результатов экспериментов, а также навыками метрологической обработки результатов экспериментов;
- физико-химическими методиками анализа веществ, образующих истинные и дисперсные системы, техникой химических экспериментов; навыками работы с химической посудой и реактивами;
- навыками работы на приборах, используемых для физикохимического анализа (фотоколориметр, спектрофотометр, рН-метр, рефрактометр, кондуктометр и т.д.).

4 Объем дисциплины в зачетных единицах и часах

Объём дисциплины	Всего часов	2 семестр часов	3 семестр часов
Общая трудоемкость дисциплины, часов	288	144	144
Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего) (аудиторная работа):	128	68	60
Лекционные занятия (всего) (ЛЗ)	48	24	24
Занятия семинарского типа (всего) (СТ)	80	44	36

Практическая подготовка (всего) (ПП)	-	-	
Самостоятельная работа (всего) (СРС)	124	76	48
Вид промежуточной аттестации обучающегося	36	+	36
(экзамен)			

5 Содержание дисциплины

5.1. Лекционные занятия

$N_{\underline{0}}$	Тема лекции	Колич	Формиру	Индик
		ество	емые	аторы
		часов	компете	дости
			нции	жения
1.	Предмет физической химии и ее значение для фармации.	2	ОПК-1	ИД-2
	Термодинамика. Первое начало термодинамики.			
	Энтальпия. Закон Гесса. Следствия из закона Гесса.			
	Термохимические расчеты. Теплоемкость. Закон			
	Кирхгофа.			
2.	Энтропия. Второе и третье начала термодинамики.	2	ОПК-1	ИД-2
	Основное термодинамическое неравенство. Энергия			, ,
	Гиббса, энергия Гельмгольца. Гельмгольца.			
	Термодинамический потенциал.			
3.	Химическое равновесие. Концентрационная и	2	ОПК-1	ИД-2
	термодинамическая константы равновесия. Вывод			, ,
	уравнения изотермы химической реакции.			
	Термодинамическое обоснование принципа Ле-Шателье-			
	Брауна.			
4.	Коллигативные свойства растворов.	2	ОПК-1	ИД-2
5.	Экстракция. Закон распределения Нернста-Шилова.	2	ОПК-1	ИД-2
	Количественные характеристики процесса экстракции			
	(коэффициент распределения, константа распределения,			
	степень извлечения). Применение экстракции в медицине			
	и фармации			
6.	Электрохимия. Теория растворов сильных электролитов	2	ОПК-1	ИД-2
	Дебая-Хюккеля. Электропроводность растворов			
	электролитов.			
7.	Термодинамика электродных процессов.	2	ОПК-1	ИД-2
	Электрохимические методы анализа в фармации.			
8.	Химическая кинетика. Формальная кинетика.	2	ОПК-1	ИД-2
	Зависимость скорости реакции от различных факторов.			-
	Уравнение Аррениуса.			
9.	Энергия активации. Ускоренные методы определения	2	ОПК-1	ИД-2
	сроков годности лекарственных препаратов.			, ,
10.	Кинетика сложных реакций. Молекулярная кинетика.	2	ОПК-1	ИД-2
	Теория активных бинарных столкновений. Элементы			, ,
	теории активированного комплекса.			
11.	•	2	ОПК-1	ИД-2
	Энергетический профиль каталитической реакции.			~ -
12.		2	ОПК-1	ИД-2
	Положительный и отрицательный катализ.			
13.	Гомогенный катализ. Кислотно-основной катализ.	2	ОПК-1	ИД-2

	Металлокомплексный катализ.			
14.	Ферментативный катализ. Торможение химических реакций. Механизм действия ингибиторов.	2	ОПК-1	ИД-2
15.	Термодинамика поверхностных явлений. Поверхностное натяжение. Уравнение изотермы адсорбции Гиббса.	2	ОПК-1	ИД-2
16.	Уравнение Шишковского. Правило Дюкло-Траубе. Адсорбция на жидкой поверхности.	2	ОПК-1	ИД-2
17.	Адсорбция на твёрдой поверхности. Мономолекулярная адсорбция, уравнение изотермы адсорбции Лэнгмюра, Генри, Фрейндлиха.	2	ОПК-1	ИД-2
18.	Полимолекулярная адсорбция. Капиллярная конденсация, абсорбция, хемосорбция.	2	ОПК-1	ИД-2
19.	Адсорбция сильных электролитов. Неспецифическая (эквивалентная) адсорбция ионов. Избирательная адсорбция ионов. Правило Панета-Фаянса.	2	ОПК-1	ИД-2
20.	Предмет коллоидной химии и её значение для фармации. Структура и классификация дисперсных систем. Методы получения и очистки коллоидных растворов.	2	ОПК-1	ИД-2
21.		2	ОПК-1	ИД-2
22.	Электрокинетические явления в фармации. Устойчивость и коагуляция коллоидных систем. Кинетика коагуляции.	2	ОПК-1	ИД-2
23.	ВМС в фармации. Набухание и растворение ВМС.	2	ОПК-1	ИД-2
	Устойчивость растворов ВМС и ее нарушение. Вязкость и осмотические свойства ВМС. Студни и гели.	2	ОПК-1	ИД-2
Bce	его:	48		

5.2. Занятия семинарского типа (практические занятия)

№	Тема практического занятия	Ча	Форми	Инди
п/п		сы	руемые	катор
			компет	Ы
			енции	дости
				жения
1.	Основные понятия термодинамики, термохимия.	4	ОПК-1	ИД-2
	Расчет тепловых эффектов реакций.			
	Оборудование и техника калориметрических			
	измерений			
2.	Зависимость тепловых эффектов химических реакций	4	ОПК-1	ИД-2
	от природы реагирующих веществ и температуры.			
	Теплоёмкость, уравнение Кирхгофа.			
	Определение активности углей по теплоте			
	смачивания.			
3.	Определение энтальпий физико-химических	4	ОПК-1	ИД-2
	процессов.			
	Определение энтальпий растворения неорганических			
	безводных солей.			
4.	Энтропия. Энергия Гиббса. Изменение	4	ОПК-1	ИД-2
	термодинамических функций состояния системы при			

	протокому физико улимноских произсор	1		
	протекании физико-химических процессов. Определение энтальний растворения неорганических			
	1 1 1			
5.	кристаллогидратов.	4	ОПК-1	ипо
5.	Закон действующих масс для состояния равновесия.	4	OHK-1	ИД-2
	Определение энтальпий гидратообразования			
	калориметрическим методом	4	OTIL 1	ипо
6.	Термодинамические потенциалы, химический	4	ОПК-1	ИД-2
7	потенциал, уравнение изотермы химической реакции.		OFFIC 1	ш
7.	Обзорное занятие №1 по разделу «Основные понятия	2	ОПК-1	ИД-2
	и законы термодинамики. Химическое равновесие».			
	1. Выполнение контрольного тестового задания.			
	2. Решение контрольных задач.		0777.1	1111.0
8.	Коллигативные свойства растворов.	2	ОПК-1	ИД-2
	Определение содержания этилового спирта в			
	настойках.			
9.	Экстракция как метод разделения и	2	ОПК-1	ИД-2
	концентрирования. Применение экстракционных			
	процессов в медицине и фармации. Распределение			
	вещества между двумя несмешивающимися жидкими			
	фазами. Закон распределения Нернста-Шилова.			
	Количественные характеристики процесса			
	экстракции. Коэффициент распределения вещества.			
	Факторы, влияющие на величину коэффициента			
	распределения.			
10.	Экстракция. Закон распределения Нернста-Шилова.	2	ОПК-1	ИД-2
	Определение коэффициента распределения вещества			
	между двумя несмешивающимися жидкостями.			
11.	Обзорное занятие № 2 по разделу «Коллигативные	2	ОПК-1	ИД-2
	свойства растворов. Экстракция».			
	1. Выполнение контрольного тестового задания.			
	2. Решение контрольных задач.			
12.	Термодинамика растворов электролитов. Теория	2	ОПК-1	ИД-2
	Дебая-Гюккеля.			, ,
	Электропроводность растворов сильных			
	электролитов. Электродные потенциалы.			
	Классификация электродов.			
	Определение электропроводности водных растворов			
	неорганических солей.			
13.	Расчет потенциалов электродов. Применение	2	ОПК-1	ИД-2
	электродов в медицине и фармации. Термодинамика			
	электродных процессов. Электролиз. Законы			
	Фарадея.			
	Определение электропроводности водных растворов			
	органических солей.			
14.	Буферные системы. Буферная емкость.	2	ОПК-1	ИД-2
17,	Определение буферной емкости растворов методом		J111€-1	114 2
	потенциометрического титрования.			
15.	потенциометрического титрования. Обзорное занятие № 3 по разделу «Электрохимия».	2	ОПК-1	ИД-2
13.			OHK-1	У1Д- 2
	1. Выполнение контрольного тестового задания.			
16	2. Решение контрольных задач.	2	ОПК-1	ипэ
16.	Химическая кинетика. Кинетические уравнения		OHK-1	ИД-2
	реакций различных порядков.			

	Оборудование и техника кинетических методов			
	исследования.			
17.	Методы определения порядков химических реакций. Факторы, определяющие кинетику физико-химических процессов. Зависимость скорости химической реакции от концентрации реагентов.	2	ОПК-1	ИД-2
18.	Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Температурный коэффициент скорости реакции. Энергия активации реакции. Связь между скоростью реакции и энергией активации реакции Методы определения энергии активации реакции.	2	ОПК-1	ИД-2
19.	Факторы, определяющие кинетику физико- химических процессов. Зависимость скорости химической реакции от температуры.	2	ОПК-1	ИД-2
20.	Изучение кинетики химических реакций инструментальными методами. Изучение скорости реакции малахитового зеленого с ионами гидроксила в присутствии солей.	2	ОПК-1	ИД-2
21.	Обзорное занятие № 4 по разделу «Кинетика химических реакций». 1. Выполнение контрольного тестового задания. 2. Решение контрольных задач.	2	ОПК-1	ИД-2
22.	Термодинамика поверхностных явлений. Изотермы адсорбции. Оборудование и техника для изучения адсорбционных процессов.	2	ОПК-1	ИД-2
23.	Адсорбция на жидкой и твёрдой поверхности. Изучение адсорбции уксусной кислоты из водных растворов на различных адсорбентах (неполярный сорбент - активированный уголь).	2	ОПК-1	ИД-2
24.	Адсорбционные процессы. Закономерности избирательной адсорбции электролитов. Изучение адсорбции электролитов на различных сорбентах с кондуктометрическим окончанием.	2	ОПК-1	ИД-2
25.	Адсорбция на жидкой и твёрдой поверхности. Изучение адсорбции уксусной кислоты из водных растворов на различных адсорбентах (полярный сорбент - силикагель, диоктаэдрический смектит).	2	ОПК-1	ИД-2
26.	Обзорное занятие № 5 по разделу «Поверхностные явления. Адсорбция». 1. Выполнение контрольного тестового задания. 2. Решение контрольных задач.	2	ОПК-1	ИД-2
27.	Коллоидные растворы. Строение коллоидных частиц. Методы получения дисперсных систем. Способы получения золей, эмульсий. Роль эмульгатора. Строение коллоидных частиц золей. Строение ДЭС. Формирование φ-потенциала и ξ-потенциала. Физический смысл φ-потенциала и ξ-потенциала. Получение коллоидных систем. Коагуляция.	2	ОПК-1	ИД-2
20.	тош улиции.		OHIV-1	114-7

	Коагуляция коллоидных систем. Неправильные ряды при коагуляции.			
29.	Коллоидные растворы. Строение коллоидных частиц. Электрокинетические явления в фармации. Защита коллоидных систем от коагуляции.	2	ОПК-1	ИД-2
30.	Молекулярно-кинетические и оптические свойства дисперсных систем.	2	ОПК-1	ИД-2
31.	Методы определения заряда коллоидных частиц. Определение знака заряда коллоидных частиц методом капиллярного анализа.	2	ОПК-1	ИД-2
32.	Обзорное занятие №6 по разделу «Дисперсные системы». 1. Выполнение контрольного тестового задания. 2. Решение контрольных задач.	2	ОПК-1	ИД-2
33.	Высокомолекулярные соединения (ВМС). Строение и свойства ВМС. Классификация ВМС. Перечень ВМС, применяемых в фармации и их предназначение. Набухание и растворение ВМС. Зависимость набухания и растворения от различных факторов. Вязкость и осмотическое давление растворов полимеров. Мембранное равновесие Доннана. Набухание и растворение ВМС. Закономерности набухания ВМС в различных средах.	2	ОПК-1	ИД-2
34.	Растворы высокомолекулярных соединений (ВМС). Итоговое тестирование Определение изоэлектрической точки ВМС по данным набухания.	2	ОПК-1	ИД-2
	Итого	80		

5.3. Самостоятельная внеаудиторная работа

№	Тема самостоятельной внеаудиторной работы	Колич	Формируемые	Форма
		ество	компетенции	контроля
		часов		
1	Буферные системы и растворы	20	ОПК-1	ИД-2
2	Методы анализа, основанные на	26	ОПК-1	ИД-2
	коллигативных свойствах растворов.			
3	Электрохимические методы анализа в	30	ОПК-1	ИД-2
	медицине и фармации. Значение этих методов			
	в фармацевтической практике.			
	(Потенциометрия. Прямая потенциометрия.			
	Потенциометрический метод измерения рН.			
	Потенциометрическое титрование.			
	Потенциометрическое определение			
	стандартной энергии Гиббса реакции и			
	константы химического равновесия.			
	Кондуктометрия. Прямая кондуктометрия.			
	Кондуктометрическое титрование.)			
4	Теории коагуляции. Адсорбционная теория	24	ОПК-1	ИД-2
	Фрейндлиха. Электростатическая теория			

	Мюллера. Современная теория коагуляции			
	Дерягина-Ландау-Фервея-Овербека.			
5	Вязкость растворов высокомолекулярных	24	ОПК-1	ИД-2
	соединений (ВМС). Методы измерения			
	вязкости растворов ВМС. Определение			
	молярной массы полимера			
	вискозиметрическим методом.			
	Итого	124		

6 Учебно-методическое и материально-техническое обеспечение

6.1. Основная и дополнительная литература

Основная литература:

- 1. Физическая и коллоидная химия: учебник / А. П. Беляев, В. И. Кучук; под ред. А. П. Беляева. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2018. 752 c. 752 c.
- 2. Коллоидная химия. Физическая химия дисперсных систем: учебник. Ершов Ю. А. 2012. 352 с.
- 3. Физическая и коллоидная химия. Руководство к практическим занятиям: учеб. пособие / под ред. А. П. Беляева. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2021. 368 с.

Дополнительная литература:

1. Физическая и коллоидная химия. Практикум обработки экспериментальных результатов: учеб. пособие / Беляев А. П. - Москва: ГЭОТАР-Медиа, 2015. - 112 с.

6.2 Профессиональные базы данных и информационно-справочные системы

- 1. Режим доступа к электронному ресурсу: по личному логину и паролю в электронной библиотеке: ЭБС Консультант студента
- 2. Система электронного обучения (виртуальная обучающая среда) «Moodle»
- 3. Система динамического формирования кроссплатформенных электронных образовательных ресурсов http://eor.edu.ru
 - 4. Федеральный портал Российское образование http://www.edu.ru
 - 5. Научная электронная библиотека http://www.elibrary.ru
- 6. Федеральная электронная медицинская библиотека (ФЭМБ) http://www.femb.ru
- 7. Медицинская on-line библиотека Medlib: справочники, энциклопедии, монографии по всем отраслям медицины на русском и английском языках http://med-lib.ru

- 8. ИС «Единое окно доступа к образовательным ресурсам» предоставляет свободный доступ к каталогу образовательных интернетресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования http://window.edu.ru
- 9. Медицинская литература: книги, справочники, учебники http://www.booksmed.com
- 10. Университетская информационная система РОССИЯ. https://uisrussia.msu.ru
 - 11. Публикации BO3 на русском языке https://www.who.int
- 12. Digital Doctor Интерактивное интернет-издание для врачей интернистов и смежных специалистов https://digital-doc.ru
 - 13. Медицинский видеопортал MDTube http://mdtube.ru
 - 14. Русский медицинский журнал (РМЖ) https://www.rmj.ru

6.3 Программное обеспечение

- 1. Операционная система Ubuntu 16
- 2. Офисный пакет «LibreOffice»

6.4 Материально-техническое обеспечение

Помещение (учебная аудитория) для проведения лекционных занятий, занятий семинарского типа (практических занятий), для проведения групповых консультаций, индивидуальных консультаций, для текущего контроля и промежуточной аттестации, предусмотренных программой специалитета, оснащенное оборудованием и техническими средствами обучения: парты, стулья обучающихся, стол преподавателя, доска маркерная, кресло преподавателя, лабораторные столы, АРМ преподавателя: проектор, (моноблок), бактерицидный облучатель экран, компьютер рециркуляторного типа, раковины, дозаторы для жидкого мыла, шкаф вытяжной В-200, шкаф для лабораторной посуды ШДХЛПА-101, шкаф для химических реактивов ШДХ-100.

Коллекция "Нефть и продукты ее переработки", коллекция "Стекло и изделия из стекла", капельница-дозатор 50 мл стекло, набор склянок 30 мл для растворов реактивов, пробирка ПХ-14, спиртовка лабораторная литая, стакан химический 100 мл, колба коническая 250 мл., штатив для пробирок 10 гнезд (полиэт.), воронка d=75 мм ПП, палочка стеклянная, набор № 1 В "Кислоты", набор № 3 ВС "Щелочи", набор № 5 С "Органические вещества", набор № 6 С "Органические вещества", набор № 12 ВС "Неорганические вещества", набор № 13 ВС "Галогениды", набор № 14 ВС "Сульфаты, сульфиты", набор № 16 ВС "Металлы, оксиды", набор № 17 С "Нитраты" (серебра нитрат -10 гр), набор № 20 ВС "Кислоты".

Таблицы: "Периодическая система хим. элементов Д.И. Менделеева", "Растворимость солей, кислот и оснований в воде", "Электрохимический ряд напряжений металлов",

Цифровое образовательное приложение «Химия. Виртуальная лаборатория. Задачи. Тренажеры. Тесты».

Каждый обучающийся в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к электронной информационно-образовательной среде института из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет»), как на территории института, так и вне ее.

Электронная информационно-образовательная среда института обеспечивает:

- доступ к учебному плану, рабочей программе дисциплины, электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочей программе дисциплины;
- формирование электронного портфолио обучающегося, в том числе сохранение его работ и оценок за эти работы.

Помещение (учебная аудитория) для самостоятельной работы обучающихся оснащено компьютерной техникой с подключением к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду Института.

Институт обеспечен необходимым комплектом программного обеспечения.

Обучающимся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам.

Обучающиеся из числа инвалидов и лиц с ОВЗ обеспечены печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.